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1.0 Application Overview

Digital filter design is fundamental in the design of Field Programmable Gate Array
(FPGA) logic that utilizes digital signal processing techniques. Regardless of whether
the filter is fixed-rate or multi-rate, there exists a need to easily design a linear phase
filter and simulate its frequency response prior to implementation in the FPGA. FFTea
was developed for ease of use for the experienced Engineer as well as the novice.

The key features of FFTea are:

FIR Filter Designer
- Linear Phase FIR Filters (non-recursive structure)
- Symmetric Filter Coefficients (positive or negative symmetry)
- Constant Group Delay (zero phase distortion)
- Low Pass, High Pass or Bandpass filters
- Filter Length: 25 to 255 taps (in odd increments)
- Fixed Precision: 20-bit to 8-bit (in integer decrements)
 Windowing functions include Kaiser and Chebyshev amongst others
« Magnitude and Unwrapped Phase Response

« Supports Normalized Units

Export of FIR Coefficients
- Generate a CSV file of Coefficients for any Fixed Precision Filter
- Filter Coefficients Scaled for Maximum Dynamic Range

- Ready for import by FPGA design tools



Filter Inspector
- A Tabular View of all previously designed FIR Filters

- All Filter Design Parameters and Design Results are Clearly Organized

Signal Designer
- Generate Waveforms at a specified Sampling Frequency
- Simply Select a Function from a Scroll and input its parameters
- Optional Additive Gaussian Noise for all functions

- Time and Frequency Domain Graphs

Signal Inspector
- A Tabular View of all previously generated Signals

- All Signal Parameters are Clearly Organized

Sum & Filter Model
- Test a Filter Design easily by specifying the Filter and its Input Signals
- Input can either be a Sum or Difference of two Signals, or a single Signal

- Time & Frequency Graphs for both the Input and the Filter’'s Response



Multirate Model
- Easily Test a Multirate Filter Design
- Specify both the Interpolate and Decimate Values: 1 to 10
- Optional auto-generated Filter allows Comparison to a Reference Design
- Input can either be a Sum or Difference of two Signals, or a single Signal

- Time & Frequency Graphs for both the Input and the Filter’'s Response



2.0 System Requirements

The System requirements for FFTea are as follows:
« Mac OS 10.6 (Snow Leopard) or Mac OS 10.5 (Leopard)
« An Intel Processor or a PowerPC (G4 or G5)

« Minimum Display Resolution: 1600 by 1000 pixels



3.0 FFTea Menu

~ @ 3y File Edit Filter Signal Model Window Help

About FFTea

Preferences... &,
Services =

Hide FFTea #H
Hide Others " &H

Quit FFTea #Q

3.1 About FFTea

Figure 3.1 illustrates the “About FFTea” Panel. Note that it contains the version number
of the application.

FFTea
Version 1.0 (15)
© 2010, Curasi Software Lab

Figure 3.1 - About FFTea Panel



3.2 Preferences

FFTea’s Preference Panel is shown in figure 3.2. A set of six checkboxes allow the user
to specify which of FFTea’s windows are open at the start of the application. The default
configuration consisting of the Filter Designer, Filter Inspector and Signal Inspector is
illustrated below. Both the Filter and Signal Inspectors are always useful to have open.

(< NON&) Preferences
Windows Open at Startup:
™ Filter Designer # Filter Inspector _1Sum & Filter Model
_!Signal Designer 4] Signal Inspector | Multirate Model

Figure 3.2 - Preferences Panel
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4.0 File Menu

® FFTea BilCy Edit

Filter Signal Model Window Help

New
Open...

Close
Save

Save As...

#EN
#0

HEW
3S
@3S

The File Menu’s operations are applicable to the Filter, Signal, and Model windows as
shown in table 4.0. If multiple windows are open, the key (front-most) window responds

to the user’s commands.

Section Window Title Key-Equivalent
5.1 Design FIR Filter ¥F
6.1 Generate Signal ¥G
71 Sum & Filter Model ®rY
7.2 Multirate Model ¥U

Table 4.0 - Windows Supporting File Operations

User generated filter, signal, and model files each have a unique file structure (and file
type) and are stored as part of FFTea’s application support files. Consequently, the user
needn’t be concerned about misplacing either a filter, signal, or model file.
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5.0 Filter Menu

® FFTea File Edit i@ Signal  Model Window Help

Design FIR Filter 3BF
Filter Inspector ¢ #1
Export FIR Coefficients 38E

The Filter menu’s items allow the user to generate a FIR filter, export its coefficients,
and view the design parameters of each previously designed filter.

5.1 Design FIR Filter

An example of the FIR Filter Designer window is illustrated in figure 5.1.1. This figure
shows the magnitude response of a lowpass filter with a sampling rate of 300 MHz and
a cutoff frequency of 25 MHz. Figure 5.1.2 illustrates the unwrapped phase response of
the identical filter. Note that the filter’s phase response is linear from 0 to -75 radians
corresponding to the passband of the preceding figure.

The filename of the filter “lp300fc25” is indicated in the titlebar of both figures.

5.1.1 Filter Length
The length or number of taps of the filter is selected by the stepper control as shown in
figure 5.1.1. The filter length may be set in odd increments from 25 to 255 taps. The
filter’s coefficients will always be symmetric regardless of the number of taps. For a
symmetric filter h[n] with length N, positive symmetry is defined as:

h[n] = h[N -n -1]
Similarly, for a symmetric filter with negative symmetry:

hin] = - h[N -n -1]

Since N is always odd the filter’s center tap will always be unique.
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Figure 5.1.1 - FIR Filter Designer Window with Magnitude of a LPF
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Figure 5.1.2 - FIR Filter Designer Window with Phase of a LPF
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5.1.2 Filter Width

Referring to the above figure, note that the filter’s width is set via a pop-up menu and
set to “Double” for double precision floating point. In addition to floating point, fixed point
widths from 20-bit to 8-bit (in integer decrements) may be selected.

When designing a filter, it is best to first use double precision to determine the optimal
response of a given filter, since it does not limit the dynamic range as in the case of
fixed-precision widths. After a filter design is established, then a fixed-point width is
required to generate integer values for filter coefficients. The coefficients may be export
for a FPGA design using the export utility in section 5.3.

5.1.3 Frequency Parameters

The Frequency Parameters consists of a pop-up for the selection of the filter type in
addition to a group of up to three input fields as shown in figure 5.1.3. The selectable
types consist of a low pass, high pass and band pass filter.

The magnitude and phase response of a band pass filter design are illustrated in figures
5.1.3 and 5.1.4 respectively. Band pass filters require a center frequency “Fcenter” in
addition to the cutoff frequency “Fcutoff” required by all filters.

Regarding the band pass filter example, the frequency for both the magnitude and
phase graphs span from 0 to a maximum of 25 MHz. Since the Nyquist Frequency for a
signal at 25 MHz is twice the rate, the sampling frequency “Fsamp” is 50MHz. When
choosing a sampling frequency, generally it is best to over-sample at a rate of at least
10x the maximum frequency component of a signal.

5.1.4 Frequency Units

The frequency units are selectable via a pop-up and may either be set to MHz, KHz, or
Normal. The selected units apply to all frequency parameters.

When the frequency units are set to Normal, the frequency for both the magnitude and
phase graphs span from 0 to unity. Since normalized units are relative rather than
absolute, the Sampling Frequency input field is not relevant and consequently hidden.

Consider the following signal with an analog frequency fa and a sampling rate of fs:

X[n]=cos (2mfanT) whereT=1/s

15



LOAB L L L L L e L o Ll
-10
20
R AR E RS | SRR § R ST RE AT AR R
-40
50
60
|| -1
-? 7777777777777777777777777777777777777
-8(
-90
C1000
0 MHz 5.00 10.00 15.00 20.00
Width: ( 20-bit %) ScbTomthow  SLOS7MET: Wind: ( Kaser %)
3dB Point ngh 13.963 MHz
Length: 75 \ @ 3dB Bandwidth 2.926 MHz B:
Passband Ripple  0.051 dB
Frequency Parameters
Filter: |  BandPass %) Fcutoff: = 1.25 ' MHz Units: | MHz v)
Fsamp: = 50 MHz Fcenter: = 12.5 MHz Craph: ( Magnitude  +)
Note: ' Filter Coefficients: Negative Symmetry ( Design Filter 9

Figure 5.1.3 - FIR Filter Designer Window with Magnitude of a BPF

16




SN O bp50fctrls

6 . :
4 \
2 w
AN
2
-4
6
8
-10 _
12 - e -\ -\
NN
{
-18 _ _
0 MHz 5.00 10.00 15.00 20.00

Width: 20-bit $ 3dB Point Low o= Wind: Kaiser :

3dB Point High ~ 13.963 MHz
Length: (75 ) [ 3dB Bandwidth ~ 2.926 MHz B: (2.7
- Passband Ripple  0.051 dB

Frequency Parameters

Filter: Band Pass %) Fcutoff: = 1.25 MHz Units: MHz Z
Fsamp: 50 MHz Fcenter: ~ 12.5  MHz Craph: Phase :
Note: ' Filter Coefficients: Negative Symmetry ' Design Filter

Figure 5.1.4 - FIR Filter Designer Window with Phase of a BPF

17



If the sampling frequency is set to the Nyquist rate:
fs=2fa
The discrete signal x[n] simplifies to:

x[n] = cos (1t n)

As evident from the equation above, a filter designed with normalized units is
independent of the sampling frequency. If the designer chooses to design filters with
normalized units, the filter design may then be applied to any system with a given
sampling frequency.

An example of a high pass filter with normalized units is shown in figure 5.1.5. Note that
the cutoff frequency is 0.5, and recall that unity represents half the sampling frequency.
Therefore, if the filter is utilized in a system with a sampling frequency of 100 MHz, the
frequency of the magnitude graph would span from 0 to a maximum of 50 MHz. Since
the filter is high pass, the passband of the filter would be from 25 to 50 MHz.

5.1.5 Windowing Functions

Windowing functions are weighting functions that can be used to reduce the sidelobes
and ripple of a filter design. The choice of a windowing function depends upon the
Engineer’s design requirements. Table 5.1.5 lists the available window functions of the
FIR Filter Designer that may be selected via the “Window” pop-up menu. In addition, the
table lists the attenuation of the first sidelobe, the extent of the transition region, and the
passband ripple for each windowing function. The measured values were for a low pass
filter design with a length of 125 taps. Note that a steeper transition region can always
be obtained by increasing the number of filter taps, at the cost of increased complexity.

As evident from table 5.1.5, the rectangular window function offers the designer the
sharpest transition region at the penalty of increased ripple in the passband. In general,
windowing functions with greatly reduced passband ripple have a wider transition
region.

Two widely popular functions are the Hamming window and the Hann window. Both
functions are raised cosines; however, the Hamming window has a DC offset and
consequently is non-zero at its extremities. Both offer a good compromise with reduced
passband ripple and a reasonable transition region.

The Nutall, Blackman-Harris, and Blackman-Nutall are high dynamic range windowing

functions with negligible passband ripple. As a result, their transition regions are among
the highest listed.
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First Sidelobe

Passband Ripple

Window Function (dB)
of Low Pass Filter
Attenuation Transition Region
(dB) (radians/sample)

Rectangle -16.8 0.009 1t 1.117
Hann -40.0 0.026 it 0.089
Hamming -48.8 0.027 t 0.036
Blackman -71.9 0.043 0.002
Nutall -100 0.060 1 0.000
Blackman-Harris -106 0.060 mt 0.000
Blackman-Nutall -110 0.060 mt 0.000
Kaiser (B=1) -19.1 0.010 m 0.869
Kaiser (B=2) -27.3 0.015m 0.344
Kaiser (3=3) -43.2 0.026 ™t 0.038
Kaiser (3=4) -63.6 0.048 it 0.005
Kaiser (B=5) -92.0 0.064 i 0.000
Chebyshev (y=2) -46.7 0.024 1t 0.045
Chebyshev (y=2.5) -61.4 0.030 0.020
Chebyshev (y=3) -69.6 0.036 1t 0.006
Chebyshev (y=3.5) -74.9 0.041 1 0.002
Chebyshev (y=4) -82.1 0.046 ™t 0.000
Chebyshev (y=4.5) -91.9 0.052 it 0.000

Table 5.1.5 - A Low Pass Filter Comparing Various Window Functions
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The Blackman windowing function offers increased sideband attenuation over the
Hamming and Hann windows, and a transition region that is substantially stepper than
the high dynamic range windowing functions.

The Kaiser and Chebyshev windowing functions are categorically different from the
aforementioned since they both offer a means of compromising between the steepness
of the transition region and the sidelobe attenuation level. Figure 5.1.3 illustrates the
magnitude of a bandpass filter using a Kaiser windowing function with 2.7 assigned to
its B parameter. Note that the Kaiser window’s sidelobes decrease the further away they
are from the center frequency. Increasing the value of 3 decreases the sidelobe
attenuation level and broadens the width of the main lobe. As the width of the main lobe
increases, the transition region also increases. A comparison of the effect of varying B is
shown in table 5.1.5.

The magnitude of a low pass filter utilizing a Chebyshev windowing function is illustrated
in figure 5.1.1. The Chebyshev window’s sidelobes have a stopband attenuation that is
predominantly uniform and is a function of its y parameter. Increasing the value of y
decreases the sidelobe attenuation level which undoubtably increases its transition
region. A comparison of the effect of varying y is shown in table 5.1.5.

5.1.6 Design Results View

The Design Results View for a high pass filter is shown at the center of figure 5.1.5. For
both low pass and high pass filters, the view consists of the 3dB point, 3dB bandwidth
and the passband ripple. The voltage at the 3dB point is 0.707x the passband voltage,
and its power is one-half the passband power. The passband ripple is the maximum
amount of ripple in the filter’s passband and is measured in decibels.

The 3dB bandwidth is simply the passband bandwidth and is measured from the 3dB
point to unity for the high pass filter shown in figure 5.1.5. For the case of a low pass
filter, the 3dB bandwidth is measured from zero to its 3dB point and therefore both are
equal (as shown in figure 5.1.1). A bandpass filter has both high and low 3dB points,
and its bandwidth is the passband measured between these points as illustrated in
figure 5.1.3.

5.1.7 Magnitude & Phase Graphs

Either a magnitude or unwrapped phase graph may be selected via the “Graph” pop-up
menu. The y-axis of the magnitude graph has a maximum value of zero decibels, and
its grid decrements in multiples of ten decibels. If the “Units” pop-up menu is set to
normalized units, the x-axis spans from zero to unity. Refer to section 5.1.4 for a
thorough description of using normalized units for frequency. If the frequency units are
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not normalized, the x-axis spans from a minimum of zero to a maximum of one-half the
sampling frequency.

The unwrapped phase graph shows the true phase response of the filter in radians and
is always linear over the filter’'s passband. Figures 5.1.2 and 5.1.4 illustrate the phase
response of a low pass and bandpass filter respectively. Note that the x-axis of the
phase graph is identical to that of the magnitude graph.

As a result of the phase linearity in the passband, the group delay is always constant
which results in a filter design with zero phase distortion. Phase linearity is only possible
with symmetrical filter coefficients. Filter coefficients may either have positive or
negative symmetry as previously discussed in section 5.1.1.

Consider the digital frequency 6 of a sampled waveform with analog frequency fa and
sampling rate fs:

B=2mfal/fs
the phase ¢ of a filter with positive symmetric coefficients can be written as:
$(6)=-ab
likewise, the phase of a filter with negative symmetric coefficients:
bO)=b-ab
therefore the Group Delay of either filter is equivalent to:

Group Delay = -dd(8) = a
de

A constant group delay indicates that signal components at different frequencies receive
the identical time delay in the filter.

5.2 Filter Inspector

The Filter Inspector window summarizes all filter parameters and design results in a
tabular view as shown in figure 5.2. By default, the Filter Inspector is positioned at the
lower right corner of the monitor upon the start of the FFTea application. The Inspector
serves as a reference for both the Fixed-Rate Filter Model (section 7.1) and the
Multirate Filter Model (section 7.2).
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5.3 Export FIR Filter Coefficients

The FIR filter coefficients of any fixed precision filter design may be exported as a CSV
(comma separated value) file and then used by a FPGA design. Before exporting filter
coefficients, the Engineer should first test the filter design using either the Fixed-Rate
Filter Model (section 7.1) or the Multirate Filter Model (section 7.2).

Figure 5.3 below illustrates the Export FIR Coefficients window after the user selected
the low pass filter “I|p50fc3” and clicked on the “Export Selection” button.

O O Export FIR Coefficients
Save As: | Ip50fc3 2 .

bp50fctrlS.fi v 16-bit
bpNormfentr Where: | (=] Desktop ? 20-bit
hp20fcl.filt Double
Ip150fc2p5.f . Double
Ip20fc2cheby Cancel ) ([ Save ) pupe
Ip20fc3p2.filt LOW Fass Z55 Double
Ip20fcS.filt Low Pass 57 Double
Ip20fcSkaiser3.filt Low Pass 255 Double
Ip300fc25.filt Low Pass 255 Double
Ip300fc75cheby3p5.filt Low Pass 255 Double
IpNormfcp2cheby3p5.filt Low Pass 255 Double

Export Selection

Figure 5.3 - The Export FIR Coefficients window
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6.0 Signal Menu

Q’ FFTea File Edit Filter Bi-hEll Model Window Help

Cenerate Signal 3G
Signal Inspector 38|

The Signal menu’s items allow the user to generate test signals for use with the models
of sections 7.1 and 7.2, and to view the parameters of each previously generated signal
via the Signal Inspector.

6.1 Generate Signal

An example of the Signal Generator window is illustrated in figure 6.1. The figure shows
both the time and frequency domain graphs for a discrete signal x[n] that is composed
of integral multiples of a 10 MHz analog frequency with a sampling rate of 300 MHz.
The signal was sampled such that its maximum frequency component was oversampled
at a 10x rate.

The filename of the signal, “Cos10M3Fs300” is indicated in the titlebar of the figure.

6.1.1 Sampling Rate

The Sampling rate for a waveform is set via the “Fs” input field as shown in figure 6.1.
The sampling rate field must match the sampling rate of the filter designed in section 5.1
in order to be utilized by either the fixed-rate (section 7.1) or multirate (section 7.2)
models.

6.1.2 Function Select
The function select view is located directly under the time domain graph as shown in
figure 6.1. The stepper control is located adjacent to the function select, and may be

incremented or decremented to select either a sinusoidal or miscellaneous function as
shown in tables 6.1.2.1 and 6.1.2.2 respectively.
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Sinusoidal Function Amplitude Analog Phase | Count
Frequency
X[n] = A cos(21 fa nT + ®) A fa )
X[n] = A1 COS(21T fal nT) Al, A2 fal, faz
+ A, cos(21 fap; nT)
M A fa 0] M
x[n] =AY cos(21T m fa nT + ®)
m=1
X[n] =Asin(2 fanT + O) A fa )
X[n] = A1 Sin(21T fal nT) Al, A2 fal, faz
+ A, sin(21r fa; nT)
M A fa 0] M
x[n] =AY sin(2m m fa nT + ®)
m=1
X[n] = A]_ Sin(21T fa]_ nT) A]_, A2 fal, fa2
* A, sin(21r fap nT)
Table 6.1.2.1 - The Signal Generator’s Sinusoidal Functions
Miscellaneous Function Mean Standard Tau Beta
Deviation
x[n] = p + Rayleigh(o) cos() ¥ o
x[n] = Arect(nT/T) T
x[n] = sinc(B 1 nT) B
X[n] = sinc?( 1T nT) B

Table 6.1.2.2 - The Signal Generator’s Miscellaneous Functions
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The sinusoidal functions of table 6.1.2.1 consist of three fundamental types: a single
sinusoid at an analog frequency, a sum of two sinusoids of different analog frequencies,
and a summation of ‘M’ sinusoids that are integral multiples of an analog frequency. In
addition, the following mixer function is also provided:

X[n] = A1 sin(21 fay NT) * A, sin(21T fap nT)
which produces the following result:

X[n] = A1 A; cos(21 (fap - faz) NT) + AL A cos(21 (fay + faz) NT)
2 2

In a strict mathematical sense the second term is negative, but since:

cos(B) = - cos(6)
the discrete waveform above is also mathematically correct. If the output of the mixer
feeds a transmitter, the waveform is a form of AM modulation referred to as double-
sideband, suppressed-carrier. The sum and difference terms in the equation are then
referred to as the upper and lower sidebands respectively.
The miscellaneous functions of table 6.1.2.2 include gaussian noise, a rectangle
function, and the sinc and sinc? functions. The gaussian noise is covered in detail in
section 6.1.3, therefore is not discussed here. The rectangle, sinc, and sinc? functions
were implemented as odd functions, namely:

x[n] # x[-n]

Since Fourier transforms of odd real functions produce complex results, the following is
true:

Re{ F(A rect(nT/1)) } = sinc[n]
Re{ F(sinc(B 1 nT) } = rect[n]
Re{ F(sinc*( m nT) } = triangle[n]

where Re{F( )} represents the real component of the Fourier transform. Since the FFTea
application displays the magnitude rather than the real component:

F(Arect(nT/1)) = | sinc[n] |

the rectangle function will display the absolute value of the sinc function.
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6.1.3 Additive Gaussian Noise

Since random numbers with a Gaussian probability distribution cannot easily be
generated from its corresponding probability density function, the Rayleigh probability
distribution function can be used to generate Gaussian random variables. If R
represents a Rayleigh distributed random variable with a probability distribution function:

FIR) = O R <0
1-eR¥20% R 20
A Gaussian random variable G with mean p can be written as:
G=p+Rcos(21r2)

where rz is uniformly distributed over 0 < r. < 1. Solving F(R) for R, the Rayleigh
distributed random variable:

R(0) = 6 V2 In(1/(1-r1))

where o is the standard deviation, and r1 is uniformly distributed over 0 < r1 < 1.
Therefore, the Gaussian random variable can be defined as:

G(o, p) =+ 0o V2 In(1/(1-r1)) cos(2 1T r2)

All functions in both tables 6.1.2.1 and 6.1.2.2 have an optional additive Gaussian noise
parameter AGN as shown by the Signal Generator window of figure 6.1.

6.1.4 Time & Frequency Domain Graphs

The Signal Designer window illustrated in figure 6.1 shows both the time and frequency
domain graphs for the selected function. The frequency graph will auto-scale such that
the maximum frequency is optimally near the mid-range of its graph. The time graph
has a zoom control with a stepper to manually magnify the x-axis as desired.

6.2 Signal Inspector

The Signal Inspector window summarizes all parameters of each generated signal in a
tabular view as shown in figure 6.2. By default, the Signal Inspector is positioned at the
lower left corner of the monitor upon the start of the FFTea application. The Inspector
serves as a reference for both the Fixed-Rate Filter Model (section 7.1) and the
Multirate Filter Model (section 7.2).
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7.0 Model Menu

é FFTea File Edit Filter Signal BALLEE Window Help

Sum & Filter &Y
Multirate #U

The Model menu contains both the fixed-rate “Sum & Filter” and Multirate models for
simulating a FIR filter design from section 5.1.

7.1 Fixed-Rate “Sum & Filter” Model

The fixed-rate “Sum & Filter” model is used for systems or sub-systems with a single
sampling rate. In order to properly test a FIR filter design (section 5.1) with generated
signals (section 6.1) the sampling rate of the FIR filter and the test signals must be
identical. The only exception is if the FIR filter design used normalized units, since in
this case the filter can be used with any given sampling rate. (See section 5.1.4. for the
use of normalized units).

Figure 7.1 illustrates the fixed-rate “Sum & Filter” model. Note that the filename of the
model, “Cos10M3andCos35” is indicated in the titlebar of the figure.

7.1.1 Sum & Filter Model Diagram

A system block diagram of the fixed-rate model is shown below the time domain graph
in figure 7.1. On the left of the diagram, two discrete signals xi[n] and x2[n] are input to
the system, each with an identical sampling rate of fs. These two discrete signals are
then summed together as x[n], and input to the filter H[n] (shown in light blue). The filter
H[n] outputs the discrete signal y[n]. Note that both y[n] and x[n] are shown to have an
identical sampling rate of fs, which is the same rate as that of the filter.

7.1.2 Input Signal Selection

Both the x1[n] and x2[n] discrete signals (referenced in the preceding section) have an
associated and labeled pop-up menu that allows the user to select previously generated
signals as input. Referring to figure 7.1, the xi[n] pop-up is set to “Cos10M3Fs300”; the
x2[n] pop-up set to “Cos35Fs300”. The discrete signal “Cos10M3Fs300” was previously
illustrated in figure 6.1, and represents the summation of three cosines of analog
frequencies 10 MHz, 20 MHz, and 30 MHz as shown. Note that the sampling rate in
figure 6.1 is 300 MHz, which is the sampling rate of the example shown in figure 7.1.
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The “Cos35Fs300” signal is a single cosine at an analog frequency of 35 MHz, and a
sampling rate of 300 MHz.

Two additional pop-up menus labeled “xi[n] Mult” and “x2[n] Mult” are multipliers for
discrete signals x1[n] and x2[n] respectively. These multipliers are used to change the
sign of its corresponding input signal to either a positive “+1” or negative “-1” value. A
third setting of “0” is available to inhibit its associated input signal, and is useful when
the user requires only one discrete input signal rather than two. Note that both
multipliers are set to “+1” in the example shown in figure 7.1.

As a result of the input signal selection, it is evident that the x[n] signal is the sum of four
cosines at analog frequencies 10 MHz, 20 MHz, 30 MHz, and 35 MHz.

7.1.3 Filter Selection

The HI[n] filter of section 7.1.1 has an associated pop-up menu that allows the user to
select a previously designed filter for use in the model. Referring to figure 7.1, the filter
pop-up is set to “Ip300fc25”, which is the previously designed low pass filter shown in
figures 5.1.1 and 5.1.2. The filter has a cutoff frequency of 25 MHz, and a sampling rate
of 300 MHz.

7.1.4 Time & Frequency Domain Graphs

The fixed-rate “Sum & Filter” model illustrated in both figures 7.1 and 7.1.4 shows both
a time and frequency domain graph that is similar to that of the Signal Generator
window as shown in figure 6.1. The frequency graph will auto-scale such that the
maximum frequency is optimally near the mid-range of its graph. The time graph has a
zoom control with a stepper to manually magnify the x-axis as desired.

7.1.5 Input & Output Graph Set Selection

There are two sets of graphs for the model, the first set to display the discrete input
signal x[n], and the second set for the discrete output signal y[n]. A pop-up menu
labeled “Graph” allows the user to select either the system input or output as the source
for both the time and frequency domain graphs as discussed in the prior section.

To view the system input, the graph pop-up is set to the input signal x[n] as illustrated in
figure 7.1. As previously discussed in section 7.1.2, the input signal is composed of four
cosines with analog frequencies of 10 MHz, 20 MHz, 30 MHz, and 35 MHz. The
frequency domain graph clearly shows the summation of cosines at their proper
frequencies. The time domain graph has a period of 100 nS, which corresponds to the
lowest frequency component of 10 MHz.
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To view the system output response, the graph pop-up is set to the output signal y[n] as
illustrated in figure 7.1.4. The discrete output signal y[n] is equal to the convolution of
the discrete input x[n] with the filter H[n]. As previously discussed in section 7.1.3, the
filter is low pass, and has a cutoff frequency of 25 MHz. Consequently, the discrete
output of the system y[n] is only composed of the 10 MHz and 20 MHz components as
shown by the frequency domain graph. The time domain graph still has a period of
100nS, but is noticeably different due to filtering out the 30 MHz and 35 MHz
components.

7.2 Multirate Filter Model

The multirate model is used for systems or sub-systems with an input sampling rate that
is different from its output sampling rate. Multirate involves either interpolation (up-
sampling), decimation (down-sampling) or a combination of both.

In order to properly test a multirate FIR filter design (section 5.1) with generated signals
(section 6.1) the sampling rate of the FIR filter must be:

fs(filter) = L fs(input)

where L is the interpolation factor. The only exception is if the FIR filter design used
normalized units, since in this case the filter can be used with any given sampling rate.
(See section 5.1.4. for the use of normalized units).

Figure 7.2 illustrates the multirate model. Note that the filename of the model,
“multirateUser300to450” is indicated in the titlebar of the figure.

7.2.1 Multirate Model Diagram

A system block diagram of the multirate model is shown below the time domain graph in
figure 7.2. On the left of the diagram, two discrete signals x1[n] and x2[n] are input to the
system, each with an identical sampling rate of fs. These two discrete signals are then
summed together as x[n], and input to an interpolator (shown in light green). The
interpolator increases the sampling rate by a factor of L, such that the sampling rate at
the output of the interpolator is Lfs for the discrete signal w[m]. The filter Him] (shown in
light blue) has input wim] and output p[m] sampled at the same Lfs rate. The discrete
signal p[m] is input to a decimator (shown in light green) which decreases the sampling
rate by a factor of M. The output of the decimator is a new discrete sequence y[k] with a
sampling rate of:

fs(out) = L f

<
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7.2.2 Input Signal Selection

The method of input signal selection for the multirate filter model is identical to that of
the fixed-rate model of section 7.1.2.

Referring to figure 7.2, the sole input signal is xi[n], since the multiplier for x2[n] is set to
zero. The pop-up for input signal x1[n] is set to “Cos10M3Fs300”, which was previously
illustrated in figure 6.1, and represents the summation of three cosines of analog
frequencies 10 MHz, 20 MHz, and 30 MHz as shown. Note that the sampling rate in
figure 6.1 is 300 MHz, which is the sampling rate of the example shown in figure 7.2.

7.2.3 Interpolation (L) & Decimation (M)

The interpolation (L) and decimation (M) values are individually set using steppers as
shown in figure 7.2. Each stepper may either increment or decrement its associated text
field located adjacent to the stepper. The range of each stepper is the set of the integers
from 1 to 10.

As noted in section 7.2.2, the input frequency is 300 MHz. Figure 7.2 identifies L=3 and
M=2, therefore the output frequency is 450 MHz (using the equation of section 7.2.1).
7.2.4 Filter Selection

Filter selection can be achieved either by selecting a previously designed filter from
section 5.1, or optionally having a filter auto-generated with the correct specifications.
Referring to figure 7.2, a radio button located below the interpolation and decimation
fields allows the user to optionally choose an auto-generated filter design.

7.2.4.1 User-Designed Multirate Filter

Referring to figures 7.2 and 7.2.4.1, the filter pop-up is set to “IpNormfcp333”, which is a
previously designed low pass filter with a cutoff frequency of 1/3 in normalized units.

The simplest approach to designing a multirate filter H[m] is as follows:

- Use a Low Pass Filter with Normalized Units. (The use of normalized units are less
susceptible to user error since the filter is independent of sampling frequency.)

- Set the Cutoff Frequency of the Low Pass Filter to 1/M if M > L, or 1/Lif L> M.

Since L > M in the example of figure 7.2, the cutoff frequency is set to 1/L or 1/3.
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7.2.4.2 Auto-Generated Multirate Filter

Figure 7.2.4.2 illustrates the multirate filter model using an auto-generated filter. Note
that the radio button is set to “Auto-Gen” and the filter pop-up menu is not visible. The
auto-generated multirate filter is designed using the same procedure as outlined in
section 7.2.4.1. The auto-generated filter is useful to test against a user designed filter.

7.2.5 Time & Frequency Domain Graphs

The multirate model illustrated in both figures 7.2 and 7.2.4.1 shows both a time and
frequency domain graph that is similar to that of the Signal Generator window as shown
in figure 6.1. The frequency graph will auto-scale such that the maximum frequency is
optimally near the mid-range of its graph. The time graph has a zoom control with a
stepper to manually magnify the x-axis as desired.

7.2.6 Input & Output Graph Set Selection

There are two sets of graphs for the model, the first set to display the discrete input
signal x[n], and the second set for the discrete output signal y[k]. Note that the input and
output are a function of different discrete sequences since x[n] and y[k] have different
sampling rates.

To view the system input, the graph pop-up is set to the input signal x[n] as illustrated in
figure 7.2. The discrete input signal x[n] was designed using the signal generator as
illustrated in figure 6.1, and is equivalent to the summation of three cosines of analog
frequencies 10 MHz, 20 MHz, and 30 MHz sampled at a rate of 300 MHz. The
frequency domain graph clearly shows the cosines at their proper frequencies. The time
domain graph has a period of 100 nS, which corresponds to the lowest frequency
component of 10 MHz.

To view the system output response, the graph pop-up is set to the output signal y[k] as
illustrated in figure 7.2.4.1 Note that the frequency domain graph of output signal y[k]
has identical frequency components to the discrete input signal x[n], but with different
magnitudes. The magnitudes of the output are 1/3 the magnitudes of the input. Similarly,
the time domain graph of output signal y[k] has the same waveform as the discrete input
signal x[n], but the amplitude is reduced by 1/3 at the output. The reason the output has
a gain of 1/3 is due to the interpolation process. The interpolation factor L will always
determine the gain of the output signal y[k]. In the example illustrated L=3; hence 1/3.

Figure 7.2.4.2 illustrates the system output response using an automatically generated

multirate filter as described in section 7.2.4.2. Note that both the time and frequency
domain responses are identical to the user designed filter response of figure 7.2.4.1.
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