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1.0 Application Overview

Digital filter design is fundamental in the design of Field Programmable Gate Array 
(FPGA) logic that utilizes digital signal processing techniques. Regardless of whether 
the filter is fixed-rate or multi-rate, there exists a need to easily design a linear phase 
filter and simulate its frequency response prior to implementation in the FPGA. FFTea  
was developed for ease of use for the experienced Engineer as well as the novice.

The key features of FFTea are:

FIR Filter Designer

• Linear Phase FIR Filters (non-recursive structure)

• Symmetric Filter Coefficients (positive or negative symmetry) 

• Constant Group Delay (zero phase distortion)

• Low Pass, High Pass or Bandpass filters

• Filter Length: 25 to 255 taps (in odd increments)

• Fixed Precision: 20-bit to 8-bit (in integer decrements)

• Windowing functions include Kaiser and Chebyshev amongst others 

• Magnitude and Unwrapped Phase Response

• Supports Normalized Units

Export of FIR Coefficients

• Generate a CSV file of Coefficients for any Fixed Precision Filter

• Filter Coefficients Scaled for Maximum Dynamic Range

• Ready for import by FPGA design tools
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Filter Inspector

• A Tabular View of all previously designed FIR Filters

• All Filter Design Parameters and Design Results are Clearly Organized

Signal Designer

• Generate Waveforms at a specified Sampling Frequency

• Simply Select a Function from a Scroll and input its parameters

• Optional Additive Gaussian Noise for all functions

• Time and Frequency Domain Graphs

Signal Inspector

• A Tabular View of all previously generated Signals

• All Signal Parameters are Clearly Organized

Sum & Filter Model

• Test a Filter Design easily by specifying the Filter and its Input Signals

• Input can either be a Sum or Difference of two Signals, or a single Signal

• Time & Frequency Graphs for both the Input and the Filterʼs Response 
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Multirate Model

• Easily Test a Multirate Filter Design

• Specify both the Interpolate and Decimate Values: 1 to 10

• Optional auto-generated Filter allows Comparison to a Reference Design

• Input can either be a Sum or Difference of two Signals, or a single Signal

• Time & Frequency Graphs for both the Input and the Filterʼs Response 
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2.0 System Requirements

The System requirements for FFTea are as follows:

• Mac OS 10.6 (Snow Leopard) or Mac OS 10.5 (Leopard)

• An Intel Processor or a PowerPC (G4 or G5)

• Minimum Display Resolution: 1600 by 1000 pixels
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3.0 FFTea Menu

3.1 About FFTea

Figure 3.1 illustrates the “About FFTea” Panel. Note that it contains the version number 
of the application.
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Figure 3.1 - About FFTea Panel



3.2 Preferences

FFTeaʼs Preference Panel is shown in figure 3.2. A  set of six checkboxes allow the user 
to specify which of FFTeaʼs windows are open at the start of the application. The default 
configuration consisting of the Filter Designer, Filter Inspector and Signal Inspector is 
illustrated below. Both the Filter and Signal Inspectors are always useful to have open.
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Figure 3.2 - Preferences Panel



4.0 File Menu

The File Menuʼs operations are applicable to the Filter, Signal, and Model windows as 
shown in table 4.0.  If multiple windows are open, the key (front-most) window responds 
to the userʼs commands.

Section Window Title Key-Equivalent

5.1 Design FIR Filter ⌘F

6.1 Generate Signal ⌘G

7.1 Sum & Filter Model ⌘Y

7.2 Multirate Model ⌘U

User generated filter, signal, and model files each have a unique file structure (and file 
type) and are stored as part of FFTeaʼs application support files. Consequently, the user 
neednʼt be concerned about misplacing either a filter, signal, or model file.
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5.0 Filter Menu

The Filter menuʼs items allow the user to generate a FIR filter, export its coefficients, 
and view the design parameters of each previously designed filter. 

5.1 Design FIR Filter

An example of the FIR Filter Designer window is illustrated in figure 5.1.1.  This figure 
shows the magnitude response of a lowpass filter with a sampling rate of 300 MHz and 
a cutoff frequency of 25 MHz. Figure 5.1.2 illustrates the unwrapped phase response of 
the identical filter. Note that the filterʼs phase response is linear from 0 to -75 radians 
corresponding to the passband of the preceding figure.

The filename of the filter “lp300fc25” is indicated in the titlebar of both figures.

5.1.1 Filter Length

The length or number of taps of the filter is selected by the stepper control as shown in 
figure 5.1.1.  The filter length may be set in odd increments from 25 to 255 taps. The 
filterʼs coefficients will always be symmetric regardless of the number of taps. For a 
symmetric filter h[n] with length N, positive symmetry is defined as:

h[n] = h[N -n -1]

Similarly, for a symmetric filter with negative symmetry:

h[n] = - h[N -n -1]

Since N is always odd the filterʼs center tap will always be unique.
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Figure 5.1.1 - FIR Filter Designer Window with Magnitude of a LPF
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Figure 5.1.2 - FIR Filter Designer Window with Phase of a LPF



5.1.2 Filter Width

Referring to the above figure, note that the filterʼs width is set via a pop-up menu and 
set to “Double” for double precision floating point. In addition to floating point, fixed point 
widths from 20-bit to 8-bit (in integer decrements) may be selected. 

When designing a filter, it is best to first use double precision to determine the optimal 
response of a given filter, since it does not limit the dynamic range as in the case of 
fixed-precision widths. After a filter design is established, then a fixed-point width is 
required to generate integer values for filter coefficients. The coefficients may be export 
for a FPGA design using the export utility in section 5.3.

5.1.3 Frequency Parameters

The Frequency  Parameters consists of a pop-up  for the selection of the filter type in 
addition to a group of up  to three input fields as shown in figure 5.1.3. The selectable 
types consist of a low pass, high pass and band pass filter.

The magnitude and phase response of a band pass filter design are illustrated in figures 
5.1.3 and 5.1.4 respectively. Band pass filters require a center frequency “Fcenter” in 
addition to the cutoff frequency “Fcutoff” required by all filters.

Regarding the band pass filter example, the frequency for both the magnitude and 
phase graphs span from 0 to a maximum of 25 MHz. Since the Nyquist Frequency for a 
signal at 25 MHz is twice the rate, the sampling frequency “Fsamp” is 50MHz. When 
choosing a sampling frequency, generally it is best to over-sample at a rate of at least 
10x the maximum frequency component of a signal.

5.1.4 Frequency Units

The frequency units are selectable via a pop-up  and may either be set to MHz, KHz, or 
Normal. The selected units apply to all frequency parameters.

When the frequency units are set to Normal, the frequency  for both the magnitude and 
phase graphs span from 0 to unity. Since normalized units are relative rather than 
absolute, the Sampling Frequency input field is not relevant and consequently hidden.

Consider the following signal with an analog frequency fa and a sampling rate of fs:

x[n] = cos (2 π fa n T)    where T = 1/fs
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Figure 5.1.3 - FIR Filter Designer Window with Magnitude of a BPF
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Figure 5.1.4 - FIR Filter Designer Window with Phase of a BPF



If the sampling frequency is set to the Nyquist rate:

fs = 2 fa

The discrete signal x[n] simplifies to:

x[n] = cos (π n)

As evident from the equation above, a filter designed with normalized units is 
independent of the sampling frequency. If the designer chooses to design filters with 
normalized units, the filter design may then be applied to any system with a given 
sampling frequency.

An example of a high pass filter with normalized units is shown in figure 5.1.5.  Note that 
the cutoff frequency is 0.5, and recall that unity  represents half the sampling frequency. 
Therefore, if the filter is utilized in a system with a sampling frequency of 100 MHz, the 
frequency of the magnitude graph would span from 0 to a maximum of 50 MHz. Since 
the filter is high pass, the passband of the filter would be from 25 to 50 MHz.

5.1.5 Windowing Functions

Windowing functions are weighting functions that can be used to reduce the sidelobes 
and ripple of a filter design. The choice of a windowing function depends upon the 
Engineerʼs design requirements. Table 5.1.5 lists the available window functions of the 
FIR Filter Designer that may be selected via the “Window” pop-up menu. In addition, the 
table lists the attenuation of the first sidelobe, the extent of the transition region, and the 
passband ripple for each windowing function. The measured values were for a low pass 
filter design with a length of 125 taps. Note that a steeper transition region can always 
be obtained by increasing the number of filter taps, at the cost of increased complexity.

As evident from table 5.1.5, the rectangular window function offers the designer the 
sharpest transition region at the penalty of increased ripple in the passband. In general, 
windowing functions with greatly reduced passband ripple have a wider transition 
region.

Two widely popular functions are the Hamming window and the Hann window. Both 
functions are raised cosines; however, the Hamming window has a DC offset and 
consequently  is non-zero at its extremities. Both offer a good compromise with reduced 
passband ripple and a reasonable transition region. 

The Nutall, Blackman-Harris, and Blackman-Nutall are high dynamic range windowing 
functions with negligible passband ripple. As a result, their transition regions are among 
the highest listed.
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Figure 5.1.5 - FIR Filter Designer Window with Magnitude of a HPF



Window Function
of Low Pass Filter

First Sidelobe Passband Ripple
(dB)

Attenuation
(dB)

Transition Region
(radians/sample)

Rectangle -16.8 0.009 π 1.117

Hann -40.0 0.026 π 0.089

Hamming -48.8 0.027 π 0.036

Blackman -71.9 0.043 π 0.002

Nutall -100 0.060 π 0.000

Blackman-Harris -106 0.060 π 0.000

Blackman-Nutall -110 0.060 π 0.000

Kaiser (β=1) -19.1 0.010 π 0.869

Kaiser (β=2) -27.3 0.015 π 0.344

Kaiser (β=3) -43.2 0.026 π 0.038

Kaiser (β=4) -63.6 0.048 π 0.005

Kaiser (β=5) -92.0 0.064 π 0.000

Chebyshev (γ=2) -46.7 0.024 π 0.045

Chebyshev (γ=2.5) -61.4 0.030 π 0.020

Chebyshev (γ=3) -69.6 0.036 π 0.006

Chebyshev (γ=3.5) -74.9 0.041 π 0.002

Chebyshev (γ=4) -82.1 0.046 π 0.000

Chebyshev (γ=4.5) -91.9 0.052 π 0.000
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The Blackman windowing function offers increased sideband attenuation over the 
Hamming and Hann windows, and a transition region that is substantially stepper than 
the high dynamic range windowing functions.

The Kaiser and Chebyshev windowing functions are categorically  different from the 
aforementioned since they both offer a means of compromising between the steepness 
of the transition region and the sidelobe attenuation level. Figure 5.1.3 illustrates the 
magnitude of a bandpass filter using a Kaiser windowing function with 2.7 assigned to 
its β parameter. Note that the Kaiser windowʼs sidelobes decrease the further away they 
are from the center frequency. Increasing the value of β decreases the sidelobe 
attenuation level and broadens the width of the main lobe. As the width of the main lobe 
increases, the transition region also increases. A comparison of the effect of varying β  is 
shown in table 5.1.5.

The magnitude of a low pass filter utilizing a Chebyshev windowing function is illustrated 
in figure 5.1.1. The Chebyshev windowʼs sidelobes have a stopband attenuation that is 
predominantly uniform and is a function of its γ parameter. Increasing the value of γ 
decreases the sidelobe attenuation level which undoubtably increases its transition 
region. A comparison of the effect of varying γ is shown in table 5.1.5.

5.1.6 Design Results View

The Design Results View for a high pass filter is shown at the center of figure 5.1.5. For 
both low pass and high pass filters, the view consists of the 3dB point, 3dB bandwidth 
and the passband ripple. The voltage at the 3dB point is 0.707x the passband voltage, 
and its power is one-half the passband power. The passband ripple is the maximum 
amount of ripple in the filterʼs passband and is measured in decibels. 

The 3dB bandwidth is simply the passband bandwidth and is measured from the 3dB 
point to unity for the high pass filter shown in figure 5.1.5. For the case of a low pass 
filter, the 3dB bandwidth is measured from zero to its 3dB point and therefore both are 
equal (as shown in figure 5.1.1). A bandpass filter has both high and low 3dB points, 
and its bandwidth is the passband measured between these points as illustrated in 
figure 5.1.3.

5.1.7 Magnitude & Phase Graphs

Either a magnitude or unwrapped phase graph may be selected via the “Graph” pop-up 
menu. The y-axis of the magnitude graph has a maximum value of zero decibels, and 
its grid decrements in multiples of ten decibels. If the “Units” pop-up  menu is set to 
normalized units, the x-axis spans from zero to unity. Refer to section 5.1.4 for a 
thorough description of using normalized units for frequency. If the frequency units are 
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not normalized, the x-axis spans from a minimum of zero to a maximum of one-half the 
sampling frequency.

The unwrapped phase graph shows the true phase response of the filter in radians and 
is always linear over the filterʼs passband. Figures 5.1.2 and 5.1.4 illustrate the phase 
response of a low pass and bandpass filter respectively. Note that the x-axis of the 
phase graph is identical to that of the magnitude graph.

As a result of the phase linearity in the passband, the group  delay is always constant 
which results in a filter design with zero phase distortion. Phase linearity is only  possible 
with symmetrical filter coefficients. Filter coefficients may either have positive or 
negative symmetry as previously discussed in section 5.1.1.

Consider the digital frequency θ of a sampled waveform with analog frequency fa and 
sampling rate fs:

 θ = 2 π fa / fs

the phase ϕ of a filter with positive symmetric coefficients can be written as:

ϕ(θ) = - a θ

likewise, the phase of a filter with negative symmetric coefficients:

ϕ(θ) =  b - a θ

therefore the Group Delay of either filter is equivalent to:

Group Delay  =  - d ϕ(θ)  =  a
               d θ

A constant group  delay indicates that signal components at different frequencies receive 
the identical time delay in the filter.

5.2 Filter Inspector

The Filter Inspector window summarizes all filter parameters and design results in a 
tabular view as shown in figure 5.2.  By default, the Filter Inspector is positioned at the 
lower right corner of the monitor upon the start of the FFTea application. The Inspector 
serves as a reference for both the Fixed-Rate Filter Model (section 7.1) and the 
Multirate Filter Model (section 7.2). 
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5.3 Export FIR Filter Coefficients

The FIR filter coefficients of any fixed precision filter design may be exported as a CSV 
(comma separated value) file and then used by a FPGA design. Before exporting filter 
coefficients, the Engineer should first test the filter design using either the Fixed-Rate 
Filter Model (section 7.1) or the Multirate Filter Model (section 7.2).

Figure 5.3 below illustrates the Export FIR Coefficients window after the user selected 
the low pass filter “lp50fc3” and clicked on the “Export Selection” button.

24
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6.0 Signal Menu

The Signal menuʼs items allow the user to generate test signals for use with the models 
of sections 7.1 and 7.2, and to view the parameters of each previously generated signal 
via the Signal Inspector.

6.1 Generate Signal

An example of the Signal Generator window is illustrated in figure 6.1. The figure shows 
both the time and frequency domain graphs for a discrete signal x[n] that is composed 
of integral multiples of a 10 MHz analog frequency with a sampling rate of 300 MHz. 
The signal was sampled such that its maximum frequency component was oversampled 
at a 10x rate.

The filename of the signal, “Cos10M3Fs300” is indicated in the titlebar of the figure.

6.1.1 Sampling Rate

The Sampling rate for a waveform is set via the “Fs” input field as shown in figure 6.1. 
The sampling rate field must match the sampling rate of the filter designed in section 5.1  
in order to be utilized by either the fixed-rate (section 7.1) or multirate (section 7.2) 
models.

6.1.2 Function Select

The function select view is located directly under the time domain graph as shown in 
figure 6.1. The stepper control is located adjacent to the function select, and may be 
incremented or decremented to select either a sinusoidal or miscellaneous function as 
shown in tables 6.1.2.1 and 6.1.2.2 respectively.
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Sinusoidal Function Amplitude Analog
Frequency

Phase Count

x[n] = A cos(2π fₐ nT + Φ) A fₐ Φ

x[n] = A₁ cos(2π fₐ₁ nT) 
       + A₂ cos(2π fₐ₂ nT)

A₁, A₂ fₐ₁, fₐ₂

             M
x[n] = A ∑ cos(2π m fₐ nT + Φ)
             m = 1

A fₐ Φ M

x[n] = A sin(2π fₐ nT + Φ) A fₐ Φ

x[n] = A₁ sin(2π fₐ₁ nT) 
       + A₂ sin(2π fₐ₂ nT)

A₁, A₂ fₐ₁, fₐ₂

             M
x[n] = A ∑ sin(2π m fₐ nT + Φ)
             m = 1

A fₐ Φ M

x[n] = A₁ sin(2π fₐ₁ nT) 
        * A₂ sin(2π fₐ₂ nT)

A₁, A₂ fₐ₁, fₐ₂

Miscellaneous Function Mean Standard
Deviation

Tau Beta

x[n] = µ + Rayleigh(σ) cos() µ σ

x[n] = A rect(nT/τ) τ

x[n] = sinc(β π nT) β

x[n] = sinc²(β π nT) β

27
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Table 6.1.2.2 - The Signal Generatorʼs Miscellaneous Functions



The sinusoidal functions of table 6.1.2.1 consist of three fundamental types: a single 
sinusoid at an analog frequency, a sum of two sinusoids of different analog frequencies, 
and a summation of ‘M’ sinusoids that are integral multiples of an analog frequency. In 
addition, the following mixer function is also provided:

x[n] = A₁ sin(2π fₐ₁ nT)  *  A₂ sin(2π fₐ₂ nT)

which produces the following result:

x[n] = A₁ A₂  cos(2π (fₐ₁ -  fₐ₂) nT) + A₁ A₂ cos(2π (fₐ₁ +  fₐ₂) nT)
                                2                                              2

In a strict mathematical sense the second term is negative, but since:

cos(θ) = - cos(θ)

the discrete waveform above is also mathematically correct. If the output of the mixer 
feeds a transmitter,  the waveform is a form of AM modulation referred to as double-
sideband, suppressed-carrier. The sum and difference terms in the equation are then 
referred to as the upper and lower sidebands respectively.

The miscellaneous functions of table 6.1.2.2 include gaussian noise, a rectangle 
function, and the sinc and sinc² functions. The gaussian noise is covered in detail in 
section 6.1.3, therefore is not discussed here. The rectangle, sinc, and sinc² functions 
were implemented as odd functions, namely:

x[n] ≠ x[-n]

Since Fourier transforms of odd real functions produce complex results, the following is 
true:

Re{ F(A rect(nT/τ)) } = sinc[n]

Re{ F(sinc(β π nT) } = rect[n]

Re{ F(sinc²(β π nT) } = triangle[n]

where Re{F( )} represents the real component of the Fourier transform. Since the FFTea 
application displays the magnitude rather than the real component:

F(A rect(nT/τ)) =  | sinc[n] |

the rectangle function will display the absolute value of the sinc function.
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6.1.3 Additive Gaussian Noise

Since random numbers with a Gaussian probability distribution cannot easily  be 
generated from its corresponding probability density function, the Rayleigh probability 
distribution function can be used to generate Gaussian random variables. If R 
represents a Rayleigh distributed random variable with a probability distribution function:

          F(R)  =    0            R  < 0
                                 1 - e-R2/2σ2     R  ≥ 0

A Gaussian random variable G with mean µ can be written as:

G = µ + R cos(2 π r2)  

where r2 is uniformly distributed over 0 ≤ r2 ≤ 1. Solving F(R) for R, the Rayleigh 
distributed random variable:

R(σ) = σ √2 ln(1/(1-r1))

where σ is the standard deviation, and r1 is uniformly distributed over 0 ≤ r1 ≤ 1. 
Therefore, the Gaussian random variable can be defined as:

G(σ, µ)  = µ + σ √2 ln(1/(1-r1)) cos(2 π r2)

All functions in both tables 6.1.2.1 and 6.1.2.2 have an optional additive Gaussian noise 
parameter AGN as shown by the Signal Generator window of figure 6.1.  

6.1.4 Time & Frequency Domain Graphs

The Signal Designer window illustrated in figure 6.1 shows both the time and frequency 
domain graphs for the selected function. The frequency graph will auto-scale such that 
the maximum frequency  is optimally  near the mid-range of its graph. The time graph 
has a zoom control with a stepper to manually magnify the x-axis as desired.

6.2 Signal Inspector

The Signal Inspector window summarizes all parameters of each generated signal in a 
tabular view as shown in figure 6.2.  By default, the Signal Inspector is positioned at the 
lower left corner of the monitor upon the start of the FFTea application. The Inspector 
serves as a reference for both the Fixed-Rate Filter Model (section 7.1) and the 
Multirate Filter Model (section 7.2).

29
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7.0 Model Menu

The Model menu contains both the fixed-rate “Sum & Filter” and Multirate models for 
simulating a FIR filter design from section 5.1.

7.1 Fixed-Rate “Sum & Filter” Model

The fixed-rate “Sum & Filter” model is used for systems or sub-systems with a single 
sampling rate. In order to properly test a FIR filter design (section 5.1) with generated 
signals (section 6.1) the sampling rate of the FIR filter and the test signals must be 
identical. The only exception is if the FIR filter design used normalized units, since in 
this case the filter can be used with any given sampling rate. (See section 5.1.4. for the 
use of normalized units).

Figure 7.1 illustrates the fixed-rate “Sum & Filter” model. Note that the filename of the 
model, “Cos10M3andCos35” is indicated in the titlebar of the figure.

7.1.1 Sum & Filter Model Diagram

A system block diagram of the fixed-rate model is shown below the time domain graph 
in figure 7.1.  On the left of the diagram, two discrete signals x1[n] and x2[n] are input to 
the system, each with an identical sampling rate of fs. These two discrete signals are 
then summed together as x[n], and input to the filter H[n] (shown in light blue). The filter 
H[n] outputs the discrete signal y[n]. Note that both y[n] and x[n] are shown to have an 
identical sampling rate of fs, which is the same rate as that of the filter.

7.1.2 Input Signal Selection

Both the x1[n] and x2[n] discrete signals (referenced in the preceding section) have an 
associated and labeled pop-up menu that allows the user to select previously generated 
signals as input. Referring to figure 7.1, the x1[n] pop-up  is set to “Cos10M3Fs300”; the 
x2[n] pop-up set to “Cos35Fs300”. The discrete signal “Cos10M3Fs300” was previously 
illustrated in figure 6.1, and represents the summation of three cosines of analog 
frequencies 10 MHz, 20 MHz, and 30 MHz as shown. Note that the sampling rate in 
figure 6.1 is 300 MHz, which is the sampling rate of the example shown in figure 7.1. 
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The “Cos35Fs300” signal is a single cosine at an analog frequency of 35 MHz, and a 
sampling rate of 300 MHz. 

Two additional pop-up menus labeled “x1[n] Mult” and “x2[n] Mult” are multipliers for 
discrete signals x1[n] and x2[n] respectively. These multipliers are used to change the 
sign of its corresponding input signal to either a positive “+1” or negative “-1” value. A 
third setting of “0” is available to inhibit its associated input signal, and is useful when 
the user requires only one discrete input signal rather than two. Note that both 
multipliers are set to “+1” in the example shown in figure 7.1.

As a result of the input signal selection, it is evident that the x[n] signal is the sum of four 
cosines at analog frequencies 10 MHz, 20 MHz, 30 MHz, and 35 MHz. 

7.1.3 Filter Selection

The H[n] filter of section 7.1.1 has an associated pop-up menu that allows the user to 
select a previously designed filter for use in the model. Referring to figure 7.1, the filter 
pop-up  is set to “lp300fc25”, which is the previously designed low pass filter shown in 
figures 5.1.1 and 5.1.2. The filter has a cutoff frequency of 25 MHz, and a sampling rate 
of 300 MHz.

7.1.4 Time & Frequency Domain Graphs

The fixed-rate “Sum & Filter” model illustrated in both figures 7.1 and 7.1.4 shows both 
a time and frequency domain graph that is similar to that of the Signal Generator 
window as shown in figure 6.1. The frequency graph will auto-scale such that the 
maximum frequency is optimally near the mid-range of its graph. The time graph has a 
zoom control with a stepper to manually magnify the x-axis as desired.

7.1.5 Input & Output Graph Set Selection

There are two sets of graphs for the model, the first set to display the discrete input 
signal x[n], and the second set for the discrete output signal y[n]. A pop-up menu 
labeled “Graph” allows the user to select either the system input or output as the source 
for both the time and frequency domain graphs as discussed in the prior section.

To view the system input, the graph pop-up is set to the input signal x[n] as illustrated in 
figure 7.1. As previously discussed in section 7.1.2, the input signal is composed of four 
cosines with analog frequencies of 10 MHz, 20 MHz, 30 MHz, and 35 MHz. The 
frequency domain graph clearly shows the summation of cosines at their proper 
frequencies. The time domain graph has a period of 100 nS, which corresponds to the 
lowest frequency component of 10 MHz.
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To view the system output response, the graph pop-up is set to the output signal y[n] as 
illustrated in figure 7.1.4. The discrete output signal y[n] is equal to the convolution of 
the discrete input x[n] with the filter H[n]. As previously discussed in section 7.1.3, the 
filter  is low pass, and has a cutoff frequency of 25 MHz. Consequently, the discrete 
output of the system y[n] is only composed of the 10 MHz and 20 MHz components as 
shown by the frequency domain graph. The time domain graph still has a period of 
100nS, but is noticeably different due to filtering out the 30 MHz and 35 MHz 
components.

7.2 Multirate Filter Model

The multirate model is used for systems or sub-systems with an input sampling rate that 
is different from its output sampling rate. Multirate involves either interpolation (up-
sampling), decimation (down-sampling) or a combination of both.

In order to properly test a multirate FIR filter design (section 5.1) with generated signals 
(section 6.1) the sampling rate of the FIR filter must be:

fs(filter) = L fs(input)

where L is the interpolation factor. The only exception is if the FIR filter design used 
normalized units, since in this case the filter can be used with any given sampling rate. 
(See section 5.1.4. for the use of normalized units).

Figure 7.2 illustrates the multirate model. Note that the filename of the model, 
“multirateUser300to450” is indicated in the titlebar of the figure.

7.2.1 Multirate Model Diagram

A system block diagram of the multirate model is shown below the time domain graph in 
figure 7.2.  On the left of the diagram, two discrete signals x1[n] and x2[n] are input to the 
system, each with an identical sampling rate of fs. These two discrete signals are then 
summed together as x[n], and input to an interpolator (shown in light green). The 
interpolator increases the sampling rate by a factor of L, such that the sampling rate at 
the output of the interpolator is Lfs for the discrete signal w[m]. The filter H[m] (shown in 
light blue) has input w[m] and output p[m] sampled at the same Lfs rate. The discrete 
signal p[m] is input to a decimator (shown in light green) which decreases the sampling 
rate by a factor of M. The output of the decimator is a new discrete sequence y[k] with a 
sampling rate of:

fs(out) = L fs
          M
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7.2.2 Input Signal Selection

The method of input signal selection for the multirate filter model is identical to that of 
the fixed-rate model of section 7.1.2.

Referring to figure 7.2, the sole input signal is x1[n], since the multiplier for x2[n] is set to 
zero. The pop-up  for input signal x1[n] is set to “Cos10M3Fs300”, which was previously 
illustrated in figure 6.1, and represents the summation of three cosines of analog 
frequencies 10 MHz, 20 MHz, and 30 MHz as shown. Note that the sampling rate in 
figure 6.1 is 300 MHz, which is the sampling rate of the example shown in figure 7.2.

7.2.3 Interpolation (L) & Decimation (M)

The interpolation (L) and decimation (M) values are individually  set using steppers as 
shown in figure 7.2. Each stepper may either increment or decrement its associated text 
field located adjacent to the stepper. The range of each stepper is the set of the integers 
from 1 to 10.

As noted in section 7.2.2, the input frequency is 300 MHz. Figure 7.2 identifies L=3 and 
M=2, therefore the output frequency is 450 MHz (using the equation of section 7.2.1). 

7.2.4 Filter Selection

Filter selection can be achieved either by selecting a previously designed filter from 
section 5.1, or optionally  having a filter auto-generated with the correct specifications.  
Referring to figure 7.2, a radio button located below the interpolation and decimation 
fields allows the user to optionally choose an auto-generated filter design.

7.2.4.1 User-Designed Multirate Filter

Referring to figures 7.2 and 7.2.4.1, the filter pop-up is set to “lpNormfcp333”, which is a 
previously designed low pass filter with a cutoff frequency of 1/3 in normalized units. 
The simplest approach to designing a multirate filter H[m] is as follows:

• Use a Low Pass Filter with Normalized Units. (The use of normalized units are less 
susceptible to user error since the filter is independent of sampling frequency.)

• Set the Cutoff Frequency of the Low Pass Filter to 1/M if M > L, or 1/L if L > M.

Since L > M in the example of figure 7.2, the cutoff frequency is set to 1/L or 1/3.
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7.2.4.2 Auto-Generated Multirate Filter

Figure 7.2.4.2 illustrates the multirate filter model using an auto-generated filter. Note 
that the radio button is set to “Auto-Gen” and the filter pop-up  menu is not visible. The 
auto-generated multirate filter is designed using the same procedure as outlined in 
section 7.2.4.1. The auto-generated filter is useful to test against a user designed filter.

7.2.5 Time & Frequency Domain Graphs

The multirate model illustrated in both figures 7.2 and 7.2.4.1 shows both a time and 
frequency domain graph that is similar to that of the Signal Generator window as shown 
in figure 6.1. The frequency graph will auto-scale such that the maximum frequency is 
optimally near the mid-range of its graph. The time graph has a zoom control with a 
stepper to manually magnify the x-axis as desired.

7.2.6 Input & Output Graph Set Selection

There are two sets of graphs for the model, the first set to display the discrete input 
signal x[n], and the second set for the discrete output signal y[k]. Note that the input and 
output are a function of different discrete sequences since x[n] and y[k] have different 
sampling rates.

To view the system input, the graph pop-up is set to the input signal x[n] as illustrated in 
figure 7.2. The discrete input signal x[n] was designed using the signal generator as 
illustrated in figure 6.1, and is equivalent to the summation of three cosines of analog 
frequencies 10 MHz, 20 MHz, and 30 MHz sampled at a rate of 300 MHz. The 
frequency domain graph clearly shows the cosines at their proper frequencies. The time 
domain graph has a period of 100 nS, which corresponds to the lowest frequency 
component of 10 MHz.

To view the system output response, the graph pop-up  is set to the output signal y[k] as 
illustrated in figure 7.2.4.1 Note that the frequency domain graph of output signal y[k] 
has identical frequency  components to the discrete input signal x[n], but with different 
magnitudes. The magnitudes of the output are 1/3 the magnitudes of the input. Similarly, 
the time domain graph of output signal y[k] has the same waveform as the discrete input 
signal x[n], but the amplitude is reduced by 1/3 at the output. The reason the output has 
a gain of 1/3 is due to the interpolation process. The interpolation factor L will always 
determine the gain of the output signal y[k]. In the example illustrated L=3; hence 1/3.

Figure 7.2.4.2 illustrates the system output response using an automatically  generated 
multirate filter as described in section 7.2.4.2. Note that both the time and frequency 
domain responses are identical to the user designed filter response of figure 7.2.4.1.
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8.0 Revision History

Revision Date Details

1.0 5 Nov 2010 Initial release.
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